Package: iml 0.11.3

Giuseppe Casalicchio

iml: Interpretable Machine Learning

Interpretability methods to analyze the behavior and predictions of any machine learning model. Implemented methods are: Feature importance described by Fisher et al. (2018) <doi:10.48550/arxiv.1801.01489>, accumulated local effects plots described by Apley (2018) <doi:10.48550/arxiv.1612.08468>, partial dependence plots described by Friedman (2001) <www.jstor.org/stable/2699986>, individual conditional expectation ('ice') plots described by Goldstein et al. (2013) <doi:10.1080/10618600.2014.907095>, local models (variant of 'lime') described by Ribeiro et. al (2016) <doi:10.48550/arXiv.1602.04938>, the Shapley Value described by Strumbelj et. al (2014) <doi:10.1007/s10115-013-0679-x>, feature interactions described by Friedman et. al <doi:10.1214/07-AOAS148> and tree surrogate models.

Authors:Giuseppe Casalicchio [aut, cre], Christoph Molnar [aut], Patrick Schratz [aut]

iml_0.11.3.tar.gz
iml_0.11.3.zip(r-4.5)iml_0.11.3.zip(r-4.4)iml_0.11.3.zip(r-4.3)
iml_0.11.3.tgz(r-4.4-any)iml_0.11.3.tgz(r-4.3-any)
iml_0.11.3.tar.gz(r-4.5-noble)iml_0.11.3.tar.gz(r-4.4-noble)
iml_0.11.3.tgz(r-4.4-emscripten)iml_0.11.3.tgz(r-4.3-emscripten)
iml.pdf |iml.html
iml/json (API)
NEWS

# Install 'iml' in R:
install.packages('iml', repos = c('https://giuseppec.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/giuseppec/iml/issues

On CRAN:

12.65 score 492 stars 4 packages 522 scripts 5.4k downloads 14 mentions 10 exports 40 dependencies

Last updated 1 months agofrom:0838adc522. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 17 2024
R-4.5-winOKNov 17 2024
R-4.5-linuxOKNov 17 2024
R-4.4-winOKNov 17 2024
R-4.4-macOKNov 17 2024
R-4.3-winOKNov 17 2024
R-4.3-macOKNov 17 2024

Exports:FeatureEffectFeatureEffectsFeatureImpInteractionInterpretationMethodLocalModelPartialPredictorShapleyTreeSurrogate

Dependencies:backportscheckmateclicodetoolscolorspacedata.tabledigestfansifarverFormulafuturefuture.applyggplot2globalsgluegtableisobandlabelinglatticelifecyclelistenvmagrittrMASSMatrixMetricsmgcvmunsellnlmeparallellypillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr

Introduction to iml: Interpretable Machine Learning in R

Rendered fromintro.Rmdusingknitr::rmarkdownon Nov 17 2024.

Last update: 2024-03-28
Started: 2018-04-17

Parallel computation of interpretation methods

Rendered fromparallel.Rmdusingknitr::rmarkdownon Nov 17 2024.

Last update: 2024-03-28
Started: 2018-08-16