Package: iml 0.11.4

Giuseppe Casalicchio

iml: Interpretable Machine Learning

Interpretability methods to analyze the behavior and predictions of any machine learning model. Implemented methods are: Feature importance described by Fisher et al. (2018) <doi:10.48550/arxiv.1801.01489>, accumulated local effects plots described by Apley (2018) <doi:10.48550/arxiv.1612.08468>, partial dependence plots described by Friedman (2001) <www.jstor.org/stable/2699986>, individual conditional expectation ('ice') plots described by Goldstein et al. (2013) <doi:10.1080/10618600.2014.907095>, local models (variant of 'lime') described by Ribeiro et. al (2016) <doi:10.48550/arXiv.1602.04938>, the Shapley Value described by Strumbelj et. al (2014) <doi:10.1007/s10115-013-0679-x>, feature interactions described by Friedman et. al <doi:10.1214/07-AOAS148> and tree surrogate models.

Authors:Giuseppe Casalicchio [aut, cre], Christoph Molnar [aut], Patrick Schratz [aut]

iml_0.11.4.tar.gz
iml_0.11.4.zip(r-4.5)iml_0.11.4.zip(r-4.4)iml_0.11.4.zip(r-4.3)
iml_0.11.4.tgz(r-4.5-any)iml_0.11.4.tgz(r-4.4-any)iml_0.11.4.tgz(r-4.3-any)
iml_0.11.4.tar.gz(r-4.5-noble)iml_0.11.4.tar.gz(r-4.4-noble)
iml_0.11.4.tgz(r-4.4-emscripten)iml_0.11.4.tgz(r-4.3-emscripten)
iml.pdf |iml.html
iml/json (API)
NEWS

# Install 'iml' in R:
install.packages('iml', repos = c('https://giuseppec.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/giuseppec/iml/issues

Pkgdown site:https://giuseppec.github.io

On CRAN:

Conda-Forge:

12.86 score 494 stars 4 packages 642 scripts 4.8k downloads 14 mentions 10 exports 40 dependencies

Last updated 11 days agofrom:4818c8f81d. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 24 2025
R-4.5-winOKFeb 24 2025
R-4.5-macOKFeb 24 2025
R-4.5-linuxOKFeb 24 2025
R-4.4-winOKFeb 24 2025
R-4.4-macOKFeb 24 2025
R-4.3-winOKFeb 24 2025
R-4.3-macOKFeb 24 2025

Exports:FeatureEffectFeatureEffectsFeatureImpInteractionInterpretationMethodLocalModelPartialPredictorShapleyTreeSurrogate

Dependencies:backportscheckmateclicodetoolscolorspacedata.tabledigestfansifarverFormulafuturefuture.applyggplot2globalsgluegtableisobandlabelinglatticelifecyclelistenvmagrittrMASSMatrixMetricsmgcvmunsellnlmeparallellypillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr

Introduction to iml: Interpretable Machine Learning in R

Rendered fromintro.Rmdusingknitr::rmarkdownon Feb 24 2025.

Last update: 2024-03-28
Started: 2018-04-17

Parallel computation of interpretation methods

Rendered fromparallel.Rmdusingknitr::rmarkdownon Feb 24 2025.

Last update: 2024-03-28
Started: 2018-08-16