Package: iml 0.11.3
Giuseppe Casalicchio
iml: Interpretable Machine Learning
Interpretability methods to analyze the behavior and predictions of any machine learning model. Implemented methods are: Feature importance described by Fisher et al. (2018) <doi:10.48550/arxiv.1801.01489>, accumulated local effects plots described by Apley (2018) <doi:10.48550/arxiv.1612.08468>, partial dependence plots described by Friedman (2001) <www.jstor.org/stable/2699986>, individual conditional expectation ('ice') plots described by Goldstein et al. (2013) <doi:10.1080/10618600.2014.907095>, local models (variant of 'lime') described by Ribeiro et. al (2016) <doi:10.48550/arXiv.1602.04938>, the Shapley Value described by Strumbelj et. al (2014) <doi:10.1007/s10115-013-0679-x>, feature interactions described by Friedman et. al <doi:10.1214/07-AOAS148> and tree surrogate models.
Authors:
iml_0.11.3.tar.gz
iml_0.11.3.zip(r-4.5)iml_0.11.3.zip(r-4.4)iml_0.11.3.zip(r-4.3)
iml_0.11.3.tgz(r-4.4-any)iml_0.11.3.tgz(r-4.3-any)
iml_0.11.3.tar.gz(r-4.5-noble)iml_0.11.3.tar.gz(r-4.4-noble)
iml_0.11.3.tgz(r-4.4-emscripten)iml_0.11.3.tgz(r-4.3-emscripten)
iml.pdf |iml.html✨
iml/json (API)
NEWS
# Install 'iml' in R: |
install.packages('iml', repos = c('https://giuseppec.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/giuseppec/iml/issues
Last updated 1 months agofrom:0838adc522. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 17 2024 |
R-4.5-win | OK | Nov 17 2024 |
R-4.5-linux | OK | Nov 17 2024 |
R-4.4-win | OK | Nov 17 2024 |
R-4.4-mac | OK | Nov 17 2024 |
R-4.3-win | OK | Nov 17 2024 |
R-4.3-mac | OK | Nov 17 2024 |
Exports:FeatureEffectFeatureEffectsFeatureImpInteractionInterpretationMethodLocalModelPartialPredictorShapleyTreeSurrogate
Dependencies:backportscheckmateclicodetoolscolorspacedata.tabledigestfansifarverFormulafuturefuture.applyggplot2globalsgluegtableisobandlabelinglatticelifecyclelistenvmagrittrMASSMatrixMetricsmgcvmunsellnlmeparallellypillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr
Introduction to iml: Interpretable Machine Learning in R
Rendered fromintro.Rmd
usingknitr::rmarkdown
on Nov 17 2024.Last update: 2024-03-28
Started: 2018-04-17
Parallel computation of interpretation methods
Rendered fromparallel.Rmd
usingknitr::rmarkdown
on Nov 17 2024.Last update: 2024-03-28
Started: 2018-08-16